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LETTER TO THE EDITOR 

Singular perturbation theory for phase-front dynamics 
and pattern selection 

K R Elder and Martin Grant 
Centre for the Physics of Materials and Department of Physics, McGill University, 
Rutherford Building, 3600 University Street, Montrtal, Qubbec, H3A 2T8 Canada 

Received 13 June 1990 

Abstract. A class of phase-front dynamics equations is investigated through a particular 
singular perturbative expansion in a late-time, restricted-wavelength limit. The approximate 
solution provides a detailed description of the dynamics of pattern formation in all 
dimensions and reproduces some aspects of marginal stability theory in one dimension. A 
universal form for the dynamic structure factor is obtained for non-conserved systems. The 
results are applied to a model of the onset of the Rayleigh-Benard instability, the Swift- 
Hohenberg equation. 

There exist a wide range of natural phenomena that involve the growth of multiphase 
spatial patterns from initially unstable states. Examples of such processes include the 
kinetics of domain growth in first-order transitions [ 1 , 21, the onset of Rayleigh-Benard 
convection [3-61, the twist Freedericksz transition in nematic crystals [7], phase 
separation in block copolymer systems [8] and population dynamics [9]. To study 
these systems, simple continuum dynamical models have been introduced to describe 
the dynamics of the slow modes of growth that display spatial variations. Often these 
models are realized in terms of nonlinear partial differential equations. Well known 
examples, in the field of phase-front dynamics, include the Swift-Hohenberg equation 
[ 31, the extended Fisher-Kolomogorov equation [ 103, the block copolymer equation 
[SI, the time-dependent Ginzburg-Landau equation [2,11] and the Fisher equation 
[9]. The difficulty in analysing these equations lies in a subtle coupling between 
nonlinearities and spatial gradients. For this reason, analytical results are often restric- 
ted to systems which display spatial gradients in only one dimension (which can be 
probed in some experimental systems). 

In this letter, a technique, developed to study the growth of fluctuations in lasers 
by Suzuki [ l ]  and in order-disorder transitions by Kawasaki et a1 [2] (and more 
recently in population dynamics [ 121 and uni-axial ferromagnetic films [3]), is general- 
ized to a class of phase dynamics problems. Some results for one dimension are 
obtained, but the main value of this treatment is the predictions for pattern formation 
in dimension d = 2 and 3. The results indicate a connection between the diverse range 
of physical processes mentioned above due to the dominance of a single Fourier 
wavenumber in the late stages of growth. In summary a singular perturbative expansion 
is employed in which the most dangerous diagrams are resummed in a particular 
asymptotic approximation discussed below. The analysis disentangles the subtle coup- 
ling between nonlinearities and spatial gradients through a nonlinear transformation 
at late times. The results of this calculation provide the complete, although approximate, 
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probability distribution function in all dimensions, in the absence of thermal noise. 
In one-dimensional front propagation problems, some aspects of the marginal stability 
theory [4,10,14] for the phase front are found to be a direct consequence of the 
approach. In higher dimensions an explicit universal form of the dynamic structure 
factor is given which can be tested numerically or experimentally. 

The general equation considered is 

where + is the field that displays spatial variation, n is an integer larger than one, t 
is time, r is a spatial coordinate, and (Y and p are functions of V2. In Fourier space, 
a ( k ) ,  where k is the wavenumber, contains one positive maximum at k,, and p must 
be a positive constant, except for d = 1, as discussed below. When n is odd, (1) contains 
two stable states, while when n is even there exists only one stable state. Equation (1) 
encompasses many models, including those mentioned above. 

An outline of the approximation scheme follows [ 151. The first step is to formally 
expand ( 1 )  in terms of the bare propagator +'( k, t )  = e"""+(k, 0), as shown in figure 
1. A straight line depicts that propagator, while a line terminating in a square represents 

The diagrammatic structure indicates that the bth-order diagram, where b is the number 
of vertices, is proportional to Go(*, t ) b ( n - l ) + '  . Since +'(r, t )  grows exponentially with 
time, every term in the expansion is required to obtain a solution at late times. Thus, 
ordering the diagrams by the vertices gives a singular perturbation expansion. 

the nonlinear perturbation - - P ( k )  5; dt, en (k ) ( r - f~ )  dk1 5 dk2 . . . 5 dk, S ( k  - X ;= 1 k l ) .  
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Figure 1. Diagrammatic expansion of ( 1 ) .  A straight line represents the bare propagator 
and the lines terminating in a square corresponds to the nonlinear interaction. 

To resum the infinite singular perturbation series, we consider the most dangerous 
diagrams (or more precisely the most dangerous parts of each diagram) in a particular 
asymptotic limit. The two approximations restrict the results to the late-time regime 
and to systems where the interface structure and detailed shape is unimportant. The 
bth-order diagram contains b integrals over time which are approximated by assuming 
that the largest pole (in Laplace space) provides the dominant contribution to the 
bth-order diagram. The error due to this approximation (i.e. ( td'2 e-"'k~n")"-l) is 
asymptotically small. The second approximation (Laplace's integral approximation 
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[16]) implies that the dominant contribution to the bth-order diagram occurs when 
IkiJ = J k  -X:z- ' )  kil = k,,, (where, k, is an integration variable), for IkJ = k,. Roughly 
speaking, this amounts to assuming that the late stage dynamics are dominated by 
minimizing the Lyapunov functional? (or free energy functional) that corresponds to 
(1). Although these are late-time approximations, and consequently provide an 
asymptotic solution to JI( r, t ) ,  the solution will be valid at early times if the fluctuations 
of the initial state are small (i.e. if +(r, t = 0) is small). 

On obtaining the approximate form of the bth-order diagram and its multiplicity, 
the series is resummed following Kawasaki et a1 [ 2 ] .  The solution for the distribution 
function is 

~ ( ( $ 1 ,  t ) = = N e x p ( z  n - 1  J 21n(l-($(r)/A)n-1)) vo 

where, A E ( (Y ( k,) / /3  ( k,,,))"(fl-'), Po is the initial distribution function, N is a normaliz- 
ation constant, and vo is the coarse graining cell volume. This is the main result of 
this letter. The equivalent representation in order parameter space is 

Equation (3) shows that the interface positions (or nodes in the pattern) rI are described 
by t)O(rI, t )  = 0 and the magnitude of the bulk fluctuations is A. Thus, (3) gives a 
simple description of the dynamical behaviour of the interface position for the class 
of problems considered. The main deficiency is that at late times (3) predicts an 
infinitely sharp transition from one phase to the other, unlike the stationary solution 
of (1) which predicts a more general transition. 

In one-dimensional front-propagation problems, one often considers the dynamics 
of a stable phase moving into an unstable one. A central problem addressed by the 
marginal stability hypothesis [4, 10, 131 is to determine how the velocity of the front 
and a particular wavenumber of the pattern formed by the front is selected. In our 
treatment, it can be shown that the velocity and wavenumber chosen at the front is 
indeed the same as that predicted by marginal stability, even though the wavenumber 
in the bulk phase is unfortunately fixed as k,. For simplicity the initial state is chosen 
to be +(x, 0 )  = 6(x). Using the saddle-point approximation [17] to evaluate $'(x, t )  
and (3) to evaluate +(x, t )  we obtain, 

Re( a( k * ) )  + ln(JCh"( k * ) l t / 2 ~ )  
U =  

Im( k * )  2 t  Im( k * )  

T - arg[ h"( k * ) ] )  
2 t  

t For constant p the Lyapunov functional ( F )  associated with ( 1 )  is 

F = -  dr f dr, a ( V 2 ) $ ( r ) $ ( r , ) 6 ( r - r , ) - - $ " + ' ( r )  . 5 [ I  n + l  p l  

(4) 

To be precise the diagrams are maximized at k = k,, which minimizes F in the absence of mode coupling. 
For one-dimensional patterns it is known [ 6 ]  that mode coupling can cause a different k to minimize F. 
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(note that the right-hand side of (4) and ( 5 )  also depends on v ) .  In (4) and ( 5 ) ,  v 
(= x/ t )  is the velocity of the front, A is the wavelength of the front, A is the amplitude 
of the fluctuations, C is a constant and k* is defined by 

where, h( k) = iku + a( k). These results are identical to the marginal stability predictions 
in the asymptotic time regime. This is because the basic premise of that theory is that 
the linear solution describes the phase front. Similarly, (3) reduces to the linear solution 
at the phase front for all times. The extra terms in the equation for the front velocity 
and wavelength do not appear in the marginal stability theory since they are early-time 
corrections to the saddle point approximation of the linear solution. An important 
deficiency of the present approach, however, is that the correct wavenumber in the 
bulk usually differs from k, in d = 1, since the wavelength selected by the front (i.e. 
A )  does not minimize the free energy functional. In higher dimensions interface 
curvature provides a mechanism to dislodge the system from any marginal stable 
solutions. 

To illustrate the d = 1 results, consider the Swift-Hohenberg equation, which is 
defined by a (k)  = y 2  - ( k2 - 1)2 and /3 = 1, where y is a control parameter. A comparison 
of a numerical solution with (3) for an initial state of $(x, 0) = 0.1 e-x is given in 
figure 2 for y = 0.9. Figure 2( a )  shows the approximate solution presented in this work 
accurately describes the early stages of growth. In the latter stages of growth (figures 
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Figure 2. Comparison of numerical and analytic solution of the one-dimensional Swift- 
Hohenberg equation. The numerical solution is the full curve and the broken curve is from 
(3). In this figure, dx =0.25, y=O.9 and $(x, t =0)  =0.1 e-x. Figures 2 ( a ) ,  2 ( b )  and 2 ( c )  
respectively correspond to t = 10, 20 and 30. 
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2(b) and 2(c)), discrepancies in the bulk begin to appear. This is because for y =0.9, 
27r/A = 1.076 while k, = 1, in the asymptotic time regime. Nevertheless, the leading 
phase front is described correctly. 

In higher dimensions, a quantity of importance is the dynamic structure factor 
(S(k, t )  = ( l ~ ) ( k ,  t)I2),  where the angular brackets denote an average over the initial 
state) since it can be measured experimentally by many methods. It is straightforward 
to calculate S ( k ,  t )  from (2) for a system that is Gaussian correlated at t = 0. In real 
space, the result is 

z+z -  
S ( r ,  t ) = A 2  lomdwe-" [ ( l + ( ~ + ) f l - l ) ( l + ( z - ) f l - l ) ] l / ( f l - l )  (7) 

where, z ' = m s i n ( # * O / 2 ) / A ,  O=cos-'(So(r, t ) /So(O,  t ) )  and So(r, t )  is the 
linear structure factor (i.e. e2cr(v2)'S(r, 0)). At late times So(O, t )  becomes large and (7) 
can be approximated in the particularly simple form (for n odd?), 

(8) 

The universal function f(x)  = (2A2/7r) sin-'(x), has been obtained previously for the 
particular case of the kinetics of the order-disorder transition [2]. It would be of 
interest to experimentally or numerically investigate the universal nature of the structure 
factor we predict. In the large-wavenumber limit, (8) is consistent with Porod's law 
[18], S ( k ,  t )  = 1/kd+l,  This is a geometric consequence of sharp interfaces. The one- 
point distribution for an initial Gaussian distribution is 

S ( r ,  t )  =f(SO(r, t ) /SO(O,  t ) ) .  

The structure of (9) indicates that an initially single-peaked function evolves into a 
bimodal distribution. At infinite time, this distribution is zero everywhere except at 
II, = *A, which corresponds to sharp domain walls. 

For the two-dimensional Swift-Hohenberg equation, S (  k, t )  as determined from 
(7) is shown in figure 3. This function develops a peak at k = 1, as highly interconnected 
domains of width 2.rr dynamically evolve from the random initial state. The one-point 
distribution for the Swift-Hohenberg equation is presented in the inset of figure 3. 

To conclude, the technique presented in this letter provides an analytic description 
of domain growth and front propagation is non-conserved systems and characterizes 
phase-front propagation in one-dimensional systems. The approximate analytic 
description also provides a universal form of the dynamical structure factor that can 
be experimentally or numerically investigated. In the future we intend to extend this 
technique to include conserved systems, where interface curvature plays an important 
role. 

This work was supported by the Natural Sciences and Engineering Research Council 
of Canada, les Fonds pour la Formation de Chercheurs et 1'Aide a la Recherche de 
la Province du Quebec and by a NATO Collaborative Research Grant project number 
CRG 890482. We thank Jorge Vifials, Maxi San Miguel, Emilio Hemhdez-Garcia, 
Chris Roland, and Rashmi Desai for useful discussions. 

t When n is even the system has only one stable state, and thus S( r, t + 00) + A* 
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Figure 3. The time dependence of the S ( k ,  t )  is disr yed for y =  as cs ulate from 
(7) for the Swift-Hohenberg equation. From bottom to top the lines correspond to t = 1,  
2, 3, 4 and 5. In the inset the one-point distribution function is shown for the same times 
as given above. t = 1 corresponds to the line that peaks at @ = 0 and t = f i  corresponds to 
the line with the two highest peaks. 
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